organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(4-Methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone

Grzegorz Dutkiewicz,^a Anil N. Mayekar,^b H. S. Yathirajan,^b B. Narayana^c and Maciej Kubicki^a*

^aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, ^bDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: mkubicki@amu.edu.pl

Received 5 March 2010; accepted 12 March 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.156; data-to-parameter ratio = 14.8.

In the title compound, $C_{19}H_{16}F_3N_3$, the dihedral angle between the naphthalene and quinoline ring systems is 14.58 (8)°. The hydrazone C-N-N=C-C chain is in an extended conformation and its mean plane is nearly coplanar with the quinoline plane [dihedral angle = $3.45 (9)^{\circ}$]. The bond angles within the phenyl ring show the almost additive influence of the two *para* substituents. In the crystal, weak $\pi - \pi$ [centroid–centroid distances = 3.779(2) and 3.718(1)Å] and C-H···F directional interactions join the molecules into centrosymmetric dimers, which are further connected into infinite zigzag chains propagating along a.

Related literature

For second-order non-linear activity, see: Serbutoviez et al. (1995). For related structures, see: Jasinski et al. (2008); Yathirajan et al. (2007). For a description fo the Cambridge Structural Database, see: Allen (2002). For bond angles in mono-substituted phenyl rings, see: Domenicano (1988).

Monoclinic, $P2_1/c$

a = 8.2811 (9) Å

Experimental

Crystal data $C_{19}H_{16}F_3N_3$ $M_r = 343.35$

b = 14.8443 (15) Å c = 13.5325 (15) Å $\beta = 90.601 \ (9)^{\circ}$ V = 1663.4 (3) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur	Diffraction, 2009)
Sapphire2 large Be window	$T_{\min} = 0.737, T_{\max} = 1.000$
diffractometer	8893 measured reflections
Absorption correction: multi-scan	3391 independent reflections
(CrysAlis PRO; Oxford	2248 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 229 parameters $wR(F^2) = 0.156$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^-$ S = 1.12 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 3391 reflections

Mo $K\alpha$ radiation

 $0.4 \times 0.15 \times 0.15 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 295 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7\cdots F91A^{i}$	0.93	2.50	3.336 (2)	150
$C14-H14C\cdots F91C^{ii}$	0.96	2.55	3.384 (2)	146
$C17 - H17 \cdots F91C^{iii}$	0.93	2.54	3.425 (3)	160
	. 1 1 <i>(</i>)		() 1	1 1

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y, -z; (iii) $x - 1, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

ANM thanks the University of Mysore for research facilities

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2546).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Domenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281-324. New York: VCH.
- Jasinski, J. P., Butcher, R. J., Narayana, B., Sunil, K. & Yathirajan, H. S. (2008). Acta Crvst. E64, 0481-0482.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.
- Serbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Günter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198-1206.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2720-o2721.

Acta Cryst. (2010). E66, 0874 [doi:10.1107/S1600536810009475]

(E)-1-(4-Methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone

G. Dutkiewicz, A. N. Mayekar, H. S. Yathirajan, B. Narayana and M. Kubicki

Comment

Hydrazones constitute a class of compounds of general formula $R_1R_2C = N - NR_3R_4$. Serbutoviez *et al.* (1995) have shown that some diaryl hydrazone derivatives show efficient second-order nonlinear activity. They connected the tendency to crystallize in Λ -shaped pairs with the possibility of the application for the frequency conversion but not for electrooptics. Here we present the structure of (*E*)-1-(4-methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone (**I**, Scheme 1); the crystal structures of two salts of similar (quinoline - phenyl) hydrazones have been reported recently: bis{4-[(2-hydroxybenzylidine)hydrazino]- 8-(trifluoromethyl)quinolinium} sulfate tetrahydrate (Yathirajan *et al.*, 2007) and bis{4-[(*Z*)--*N*-(4-hydroxybenzylidene)- hydrazino]-8-(trifluoromethyl)- quinolinium} sulfate dihydrate (Jasinski *et al.*, 2008).

The overall conformation of the molecules of **I** can be described by the values of dihedral angles between the three planar fragments: the quinoline ring system (hereinafter A will denote pyridine ring, B - trifluoromethylphenyl ring, planar within 0.0076 (14) Å), the central extended C—N—N= C—C chain (maximum deviation from the least-squares plane of 0.0158 (12) Å), and the phenyl ring (C, maximum deviation 0.021 (2) Å). While the first two fragments are almost coplanar, dihedral angle between the planes is only 3.45 (9)°, this fragment is significantly, by 14.5 (1)°, twisted with respect to the phenyl ring plane. Such conformation is rather typical; for 186 fragments found in 155 similar compunds (Ar₁—N—N=C—Ar₂) found in the Cambridge Structual Database [CSD, Conquest 5.31; Allen, 2002] the Ar₁ plane is close to coplanarity with the central chain (mean value 5.9 (3)°, maximum 18.7°), while it is more twisted with respect to Ar₂ plane (mean 17 (2)°, 33 examples of angles larger than 30°). The bond length pattern within the chain reflects the more single/double character of certain bonds. The bond angles within the phenyl ring are influenced by the presence of substituents; as expected for *p*-substitution, the influences are almost additive. The sum of values given by Domenicano (1988) or found in the CSD for mono-substituted phenyl rings are very close to the actual values in (I).

In the crystal the molecules are connected into dimers by π - π interactions: centroid-to-centroid distance between rings A and B (2-*x*,-*y*,-*z*) is 3.779 (2)Å with an offset of 22.1°, which gives the interplanar distance of 3.509Å (mean value). Distance between centroids of rings B and B(2-*x*,-*y*,-*z*) is 3.718 (1) Å, with interplanar distance of 3.516Å resulting in an offset of 19.0°. These dimers, in which there are additional C—H…F (Table 1) contacts (Fig. 2), are further connected into zig-zag chains (A-shaped) along *a* direction. It might be noted, that the N—H hydrogen atom is so hidden by the neighboring C6—H6 and C14 methyl hydrogen atoms that it can not be involved in any intermolecular interactions.

Experimental

A solution of 4-hydrazino-8-(trifluoromethyl)quinoline (2.2 g, 10 mmole) and 4-methyl-acetophenone (10.2 mmole) in 10 ml of ethanol was refluxed for 24 hrs under nitrogen atmosphere and in absence of light. The reaction mass was then cooled and the solid separated was collected by filtration and recrystallized from ethanol. M.P.: 449-451 K. Analysis found : C 66.41, H 4.67, N 12.20; $C_{19}H_{16}F_{3}N_{3}$ requires : C 66.48, H 4.70, N 12.24%.

Refinement

Hydrogen atoms were located geometrically (C(methyl)-H 0.93 Å, C(ar)—H 0.96 Å, N—H 0.86 Å) and refined as a riding model; the U_{iso} values of H atoms were set at 1.2 (1.5 for methyl groups) times U_{eq} of their carrier atom.

Figures

Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Fig. 2. The centrosymmetric dimer of molecules I; π – π and C—H…F contacts are shown as dashed lines. are shown as dashed lines.

(E)-1-(4-Methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone

Crystal data

$C_{19}H_{16}F_{3}N_{3}$	F(000) = 712
$M_r = 343.35$	$D_{\rm x} = 1.371 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4730 reflections
a = 8.2811 (9) Å	$\theta = 3.0 - 28.0^{\circ}$
<i>b</i> = 14.8443 (15) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 13.5325 (15) Å	T = 295 K
$\beta = 90.601 \ (9)^{\circ}$	Prism, yellow
$V = 1663.4 (3) \text{ Å}^3$	$0.4\times0.15\times0.15~mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Sapphire2 large Be win-	
dow	3391 independent reflections
diffractometer	
Radiation source: Enhance (Mo) X-ray Source	2248 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
Detector resolution: 8.1929 pixels mm ⁻¹	$\theta_{\text{max}} = 28.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω–scan	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009)	$k = -17 \rightarrow 19$
$T_{\min} = 0.737, T_{\max} = 1.000$	$l = -17 \rightarrow 13$
8893 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0897P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
3391 reflections	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
229 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	E dia dia ama (Cinada 0.010 (2))

methods Extinction coefficient: 0.019 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.83992 (19)	0.01946 (10)	0.20074 (10)	0.0513 (4)
C2	0.7602 (3)	-0.05642 (13)	0.20928 (14)	0.0597 (6)
H2	0.7546	-0.0817	0.2721	0.072*
C3	0.6830 (2)	-0.10262 (12)	0.13230 (13)	0.0537 (5)
Н3	0.6293	-0.1565	0.1444	0.064*
C4	0.68734 (19)	-0.06746 (11)	0.03860 (12)	0.0401 (4)
C5	0.77200 (18)	0.01539 (10)	0.02401 (11)	0.0370 (4)
C6	0.7863 (2)	0.05794 (11)	-0.06808 (13)	0.0474 (5)
H6	0.7370	0.0323	-0.1233	0.057*
C7	0.8702 (2)	0.13543 (12)	-0.07816 (15)	0.0573 (5)
H7	0.8792	0.1620	-0.1401	0.069*
C8	0.9435 (2)	0.17588 (12)	0.00411 (16)	0.0553 (5)
H8	1.0003	0.2295	-0.0034	0.066*
C9	0.93256 (19)	0.13729 (11)	0.09527 (14)	0.0430 (4)
C91	1.0141 (2)	0.18041 (12)	0.18190 (16)	0.0564 (5)
F91A	0.91479 (15)	0.20118 (9)	0.25506 (10)	0.0827 (5)
F91B	1.09032 (17)	0.25657 (8)	0.15776 (12)	0.0910 (5)
F91C	1.12986 (14)	0.12807 (8)	0.22230 (9)	0.0708 (4)
C10	0.84643 (19)	0.05542 (10)	0.10817 (12)	0.0388 (4)
N11	0.61492 (17)	-0.10952 (9)	-0.04049 (11)	0.0469 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.6160	-0.0855	-0.0983	0.056*
0.54053 (17)	-0.19105 (9)	-0.02519 (10)	0.0451 (4)
0.47706 (18)	-0.23051 (12)	-0.10088 (13)	0.0409 (4)
0.4800 (2)	-0.19314 (13)	-0.20397 (13)	0.0536 (5)
0.4451	-0.1315	-0.2031	0.080*
0.4088	-0.2277	-0.2457	0.080*
0.5879	-0.1964	-0.2290	0.080*
0.39938 (19)	-0.31859 (12)	-0.08073 (12)	0.0426 (4)
0.3532 (3)	-0.37659 (15)	-0.15437 (16)	0.0757 (7)
0.3689	-0.3603	-0.2199	0.091*
0.2841 (3)	-0.45844 (17)	-0.13344 (18)	0.0938 (9)
0.2546	-0.4961	-0.1855	0.113*
0.2571 (3)	-0.48652 (14)	-0.03884 (16)	0.0652 (6)
0.2963 (3)	-0.42716 (16)	0.03489 (17)	0.0790 (7)
0.2747	-0.4424	0.1001	0.095*
0.3673 (3)	-0.34517 (15)	0.01459 (15)	0.0711 (6)
0.3942	-0.3069	0.0666	0.085*
0.1827 (4)	-0.57785 (17)	-0.0168 (2)	0.0937 (8)
0.1198	-0.5974	-0.0728	0.141*
0.1145	-0.5730	0.0399	0.141*
0.2669	-0.6208	-0.0036	0.141*
	0.6160 0.54053 (17) 0.47706 (18) 0.4800 (2) 0.4451 0.4088 0.5879 0.39938 (19) 0.3532 (3) 0.3689 0.2841 (3) 0.2546 0.2571 (3) 0.2963 (3) 0.2747 0.3673 (3) 0.3942 0.1827 (4) 0.1198 0.2669	0.6160 -0.0855 $0.54053(17)$ $-0.19105(9)$ $0.47706(18)$ $-0.23051(12)$ $0.4800(2)$ $-0.19314(13)$ 0.4451 -0.1315 0.4088 -0.2277 0.5879 -0.1964 $0.39938(19)$ $-0.31859(12)$ $0.3532(3)$ $-0.37659(15)$ 0.3689 -0.3603 $0.2841(3)$ $-0.45844(17)$ 0.2546 -0.4961 $0.2963(3)$ $-0.42716(16)$ 0.2747 -0.4424 $0.3673(3)$ $-0.37659(15)$ 0.3942 -0.3069 $0.1827(4)$ $-0.57785(17)$ 0.1145 -0.5730 0.2669 -0.6208	0.6160 -0.0855 -0.0983 $0.54053(17)$ $-0.19105(9)$ $-0.02519(10)$ $0.47706(18)$ $-0.23051(12)$ $-0.10088(13)$ $0.4800(2)$ $-0.19314(13)$ $-0.20397(13)$ 0.4451 -0.1315 -0.2031 0.4088 -0.2277 -0.2457 0.5879 -0.1964 -0.2290 $0.39938(19)$ $-0.31859(12)$ $-0.08073(12)$ $0.3532(3)$ $-0.37659(15)$ $-0.15437(16)$ 0.3689 -0.3603 -0.2199 $0.2841(3)$ $-0.45844(17)$ $-0.13344(18)$ 0.2546 -0.4961 -0.1855 $0.2571(3)$ $-0.42716(16)$ $0.03489(17)$ 0.2747 -0.4424 0.1001 $0.3673(3)$ $-0.3765(17)$ $-0.0168(2)$ 0.1198 -0.5974 -0.0728 0.1145 -0.5730 0.0399 0.2669 -0.6208 -0.0036

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0716 (10)	0.0439 (9)	0.0383 (9)	-0.0069 (8)	0.0033 (7)	-0.0045 (7)
C2	0.0930 (14)	0.0510 (12)	0.0352 (11)	-0.0162 (11)	0.0069 (10)	0.0043 (8)
C3	0.0784 (13)	0.0422 (10)	0.0407 (11)	-0.0182 (9)	0.0096 (9)	0.0018 (8)
C4	0.0468 (9)	0.0359 (9)	0.0376 (10)	-0.0010 (7)	0.0063 (7)	-0.0037 (7)
C5	0.0413 (8)	0.0325 (9)	0.0374 (9)	0.0042 (7)	0.0063 (7)	0.0002 (7)
C6	0.0576 (11)	0.0425 (10)	0.0419 (11)	-0.0032 (8)	0.0007 (8)	0.0063 (8)
C7	0.0696 (12)	0.0489 (11)	0.0535 (12)	-0.0040 (10)	0.0015 (10)	0.0173 (9)
C8	0.0566 (11)	0.0326 (9)	0.0768 (15)	-0.0044 (8)	0.0033 (10)	0.0108 (9)
C9	0.0436 (9)	0.0305 (9)	0.0550 (11)	0.0029 (7)	0.0042 (8)	-0.0027 (8)
C91	0.0586 (11)	0.0383 (10)	0.0723 (14)	-0.0024 (9)	0.0007 (11)	-0.0079 (10)
F91A	0.0791 (8)	0.0770 (9)	0.0921 (10)	-0.0038 (6)	0.0074 (7)	-0.0479 (7)
F91B	0.1055 (10)	0.0536 (8)	0.1134 (11)	-0.0350 (7)	-0.0218 (8)	-0.0004 (7)
F91C	0.0662 (7)	0.0711 (8)	0.0748 (9)	0.0030 (6)	-0.0153 (6)	-0.0064 (6)
C10	0.0440 (9)	0.0318 (9)	0.0407 (10)	0.0044 (7)	0.0061 (7)	-0.0031 (7)
N11	0.0603 (9)	0.0418 (9)	0.0385 (8)	-0.0095 (7)	0.0008 (7)	0.0017 (6)
N12	0.0516 (8)	0.0389 (8)	0.0451 (9)	-0.0074 (6)	0.0035 (7)	-0.0030(7)
C13	0.0398 (9)	0.0432 (10)	0.0398 (10)	0.0019 (7)	0.0027 (7)	-0.0035 (8)
C14	0.0549 (10)	0.0589 (12)	0.0468 (11)	-0.0128 (9)	-0.0026 (9)	0.0019 (9)
C15	0.0420 (9)	0.0446 (10)	0.0412 (10)	-0.0023 (7)	-0.0002 (7)	-0.0038 (8)
C16	0.1163 (18)	0.0696 (15)	0.0415 (12)	-0.0364 (14)	0.0040 (12)	-0.0073 (10)
C17	0.151 (2)	0.0727 (16)	0.0582 (15)	-0.0566 (16)	0.0012 (15)	-0.0164 (12)
C18	0.0776 (13)	0.0546 (13)	0.0633 (14)	-0.0191 (11)	-0.0049 (11)	0.0019 (10)
C19	0.1223 (19)	0.0664 (15)	0.0481 (13)	-0.0332 (14)	-0.0083 (13)	0.0116 (11)

C20	0.1085 (17)	0.0601 (13)	0.0446 (12)	-0.0282 (12)	-0.0088 (12)	-0.0011 (10)
C21	0.123 (2)	0.0671 (16)	0.0911 (19)	-0.0361 (15)	-0.0111 (16)	0.0132 (13)
Geometric parai	neters (Å, °)					
N1—C2		1.311 (2)	N11—	-H11	0.86	00
N1-C10		1.363 (2)	N12—	-C13	1.28	7 (2)
C2—C3		1.397 (3)	C13—	-C15	1.48	4 (2)
С2—Н2		0.9300	C13—	-C14	1.50	2 (2)
C3—C4		1.372 (2)	C14—	-H14A	0.96	00
С3—Н3		0.9300	C14—	-H14B	0.96	00
C4—N11		1.372 (2)	C14—	-H14C	0.96	00
C4—C5		1.430 (2)	C15—	-C16	1.36	9 (3)
С5—С6		1.403 (2)	C15—	-C20	1.37	7 (2)
C5—C10		1.420 (2)	C16—	-C17	1.37	4 (3)
C6—C7		1.351 (2)	C16—	-H16	0.93	00
С6—Н6		0.9300	C17—	-C18	1.36	7 (3)
С7—С8		1.398 (3)	C17—	-H17	0.93	00
С7—Н7		0.9300	C18—	-C19	1.36	8 (3)
С8—С9		1.364 (3)	C18—	-C21	1.52	0 (3)
C8—H8		0.9300	C19—	-C20	1.38	0 (3)
C9—C10		1.421 (2)	C19—	-H19	0.93	00
С9—С91		1.491 (3)	C20—	-H20	0.93	00
C91—F91A		1.330 (2)	C21—	-H21A	0.96	00
C91—F91B		1.337 (2)	C21—	-H21B	0.96	00
C91—F91C		1.345 (2)	C21—	-H21C	0.96	00
N11—N12		1.3746 (18)				
C2—N1—C10		116.24 (15)	N12—	-N11—H11	120.	8
N1—C2—C3		125.66 (17)	C13—	-N12—N11	117.	43 (14)
N1—C2—H2		117.2	N12—	-C13—C15	115.	40 (15)
С3—С2—Н2		117.2	N12—	-C13—C14	124.	10 (16)
C4—C3—C2		119.09 (16)	C15—	-C13—C14	120.	50 (15)
С4—С3—Н3		120.5	C13—	-C14—H14A	109.	5
С2—С3—Н3		120.5	C13—	-C14—H14B	109.	5
N11—C4—C3		122.16 (15)	H14A		109.	5
N11—C4—C5		119.64 (15)	C13—	-C14—H14C	109.	5
C3—C4—C5		118.19 (15)	H14A		109.	5
C6—C5—C10		118.96 (15)	H14B		109.	5
C6—C5—C4		123.75 (15)	C16—	-C15—C20	116.	53 (17)
C10—C5—C4		117.29 (14)	C16—	-C15—C13	122.	61 (17)
C7—C6—C5		121.40 (17)	C20—	-C15—C13	120.	85 (16)
С/—С6—Н6		119.3	C15—	-C16—C17	121.	3 (2)
С5—С6—Н6		119.3	C15—	-C16—H16	119.	3
C6—C7—C8		120.31 (17)	CI7—	-C16—H16	119.	3
C6—C7—H7		119.8	C18—	-CI/CI6	122.	4 (<i>2</i>)
$C_{0} = C_{1} = H_{1}$		119.8	C18—	-UI/HI/	118.	5
C_{9} C_{8} C_{7}		120.48 (16)	C16—	-C1/-H1/	118.	5
C7 C8 H8		119.8	C17—	-C18C19	116.	54 (19) 8 (2)
С/—С8—Н8		119.8	C17—	-C18-C21	121.	8 (2)

C8—C9—C10	120.57 (17)	C19—C18—C21	121.7 (2)
C8—C9—C91	119.79 (16)	C18—C19—C20	121.4 (2)
C10-C9-C91	119.63 (16)	С18—С19—Н19	119.3
F91A—C91—F91B	106.44 (16)	С20—С19—Н19	119.3
F91A—C91—F91C	105.95 (17)	C15—C20—C19	121.71 (19)
F91B—C91—F91C	104.57 (15)	С15—С20—Н20	119.1
F91A—C91—C9	113.97 (16)	С19—С20—Н20	119.1
F91B—C91—C9	112.45 (17)	C18—C21—H21A	109.5
F91C—C91—C9	112.74 (15)	C18—C21—H21B	109.5
N1-C10-C5	123.52 (14)	H21A—C21—H21B	109.5
N1—C10—C9	118.20 (15)	C18—C21—H21C	109.5
C5—C10—C9	118.28 (15)	H21A—C21—H21C	109.5
C4—N11—N12	118.44 (14)	H21B-C21-H21C	109.5
C4—N11—H11	120.8		
C10—N1—C2—C3	0.1 (3)	C4—C5—C10—C9	179.39 (13)
N1—C2—C3—C4	-0.4 (3)	C8—C9—C10—N1	179.64 (15)
C2—C3—C4—N11	179.62 (17)	C91—C9—C10—N1	0.8 (2)
C2—C3—C4—C5	0.2 (3)	C8—C9—C10—C5	-0.3 (2)
N11—C4—C5—C6	0.1 (2)	C91—C9—C10—C5	-179.13 (15)
C3—C4—C5—C6	179.55 (17)	C3—C4—N11—N12	-2.2 (2)
N11-C4-C5-C10	-179.21 (14)	C5-C4-N11-N12	177.15 (13)
C3—C4—C5—C10	0.2 (2)	C4—N11—N12—C13	-178.20 (15)
C10—C5—C6—C7	0.6 (3)	N11-N12-C13-C15	179.54 (13)
C4—C5—C6—C7	-178.79 (16)	N11-N12-C13-C14	0.2 (2)
C5—C6—C7—C8	-0.8 (3)	N12-C13-C15-C16	-167.60 (19)
C6—C7—C8—C9	0.6 (3)	C14—C13—C15—C16	11.8 (3)
C7—C8—C9—C10	0.0 (3)	N12-C13-C15-C20	13.7 (2)
C7—C8—C9—C91	178.86 (17)	C14—C13—C15—C20	-166.96 (18)
C8—C9—C91—F91A	122.12 (19)	C20-C15-C16-C17	-2.4 (4)
C10-C9-C91-F91A	-59.0 (2)	C13-C15-C16-C17	178.8 (2)
C8—C9—C91—F91B	0.9 (2)	C15-C16-C17-C18	0.2 (4)
C10-C9-C91-F91B	179.75 (15)	C16-C17-C18-C19	2.7 (4)
C8—C9—C91—F91C	-117.05 (18)	C16-C17-C18-C21	-179.1 (3)
C10-C9-C91-F91C	61.8 (2)	C17—C18—C19—C20	-3.3 (4)
C2—N1—C10—C5	0.4 (3)	C21-C18-C19-C20	178.5 (2)
C2—N1—C10—C9	-179.55 (16)	C16—C15—C20—C19	1.7 (3)
C6—C5—C10—N1	-179.90 (15)	C13—C15—C20—C19	-179.5 (2)
C4—C5—C10—N1	-0.5 (2)	C18—C19—C20—C15	1.2 (4)
C6—C5—C10—C9	0.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
C7—H7···F91A ⁱ	0.93	2.50	3.336 (2)	150
C14—H14C…F91C ⁱⁱ	0.96	2.55	3.384 (2)	146
C17—H17···F91C ⁱⁱⁱ	0.93	2.54	3.425 (3)	160
$S_{\text{commutative}} = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2}$	() 1/2	- 1/2		

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+2, -y, -z; (iii) x-1, -y-1/2, z-1/2.

Fig. 1

Fig. 2

